$1,000.00 MXN (IVA Incluido)
Sin existencias
El MEGA 2560 es una placa electrónica basada en el Atmega2560. Cuenta con 54 pines digitales de entrada / salida (de los cuales 15 se pueden utilizar como salidas PWM), 16 entradas analógicas, 4 UARTs (puertos serie de hardware), un oscilador de 16MHz, una conexión USB, un conector de alimentación, una cabecera ICSP, y un botón de reinicio. Contiene todo lo necesario para apoyar el microcontrolador; basta con conectarlo a un equipo de cómputo con un cable USB o la corriente con un adaptador de AC a DC o una batería para empezar a trabajar.
Localización: D8
Fabricante | Arduino |
---|
Sin existencias
The Mega 2560 is a microcontroller board based on the ATmega2560. It has 54 digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started.
The Mega 2560 board is compatible with most shields designed for the Uno and the former boards Duemilanove or Diecimila.
The Mega 2560 is an update to the Arduino Mega, which it replaces.
You can find here your board warranty informations.
You can find in the Gett ing Started section all the information you need to configure your board, use the Arduino So ftware (IDE), and start tinker with coding and electronics.
Microcontroller | ATmega2560 |
Operating Voltage | 5V |
Input Voltage (recommended) | 7-12V |
Input Voltage (limit) | 6-20V |
Digital I/O Pins | 54 (of which 15 provide PWM output) |
Analog Input Pins | 16 |
DC Current per I/O Pin | 20 mA |
DC Current for 3.3V Pin | 50 mA |
Flash Memory | 256 KB of which 8 KB used by bootloader |
SRAM | 8 KB |
EEPROM | 4 KB |
Clock Speed | 16 MHz |
LED_BUILTIN | 13 |
Length | 101.52 mm |
Width | 53.3 mm |
Weight | 37 g |
The Mega 2560 board can be programmed with the Arduino Software (IDE). For details, see thereference and tutorials.
The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is available in theArduino repository. The ATmega16U2/8U2 is loaded with a DFU bootloader, which can be activated by:
The Mega 2560 has a resettable polyfuse that protects your computer’s USB ports from shorts and overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed.
The Mega 2560 can be powered via the USB connection or with an external power supply. The power source is selected automatically.
The power pins are as follows:
The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM library).
In addition, some pins have specialized functions:
See also the mapping Arduino Mega 2560 PIN diagram.
The Mega 2560 board has a number of facilities for communicating with a computer, another board, or other microcontrollers. The ATmega2560 provides four hardware UARTs for TTL (5V) serial communication. An ATmega16U2 (ATmega 8U2 on the revision 1 and revision 2 boards) on the board channels one of these over USB and provides a virtual com port to software on the computer (Windows machines will need a .inf file, but OSX and Linux machines will recognize the board as a COM port automatically. The Arduino Software (IDE) includes a serial monitor which allows simple textual data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being transmitted via the ATmega8U2/ATmega16U2 chip and USB connection to the computer (but not for serial communication on pins 0 and 1).
The maximum length and width of the Mega 2560 PCB are 4 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16″), not an even multiple of the 100 mil spacing of the other pins.
Rather then requiring a physical press of the reset button before an upload, the Mega 2560 is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega2560 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino Software (IDE) uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.
The Mega 2560 does not use the FTDI USB-to-serial driver chip used in past designs. Instead, it features the ATmega16U2 (ATmega8U2 in the revision 1 and revision 2 Arduino boards) programmed as a USB-to-serial converter.
Revision 2 of the Mega 2560 board has a resistor pulling the 8U2 HWB line to ground, making it easier to put into DFU mode.
Revision 3 of the Arduino board and the current Genuino Mega 2560 have the following improved features:
(55) 5768 - 3208
Avenida Morelos 540, Col. Magdalena Mixiuhca, CP: 15850, Alc: Venustiano Carranza, CDMX
Horario de atención:
Lunes a viernes de 9:00AM – 6:00PM
Sábado de 10:00AM – 3:00PM
SANDOROBOTICS © 2024 | Puesto en línea por Vleeko